About This Moon Malarky

I try to be tolerant and understanding of other people’s positions, but moon-hoax conspiracists really get my dander up. I mean….I mean…no, we’ll come back to that.
My recent post, Yes virginia we really did land on the moon has been very popular, and prompted someone on Quora to asked what are the best pieces of evidence that the moon landings were faked. Well, there are none. No, really. None at all. There are only assertions made by people who have absolutely. No. Clue:
  • No stars in pictures (camera stopped down for lunar surface )
  • Flags waving (held by wire)
  • Apollo 11 flag “billowing ” (it was curled from long storage)
  • No blast crater under the LEM (early engine cutoff was to prevent cratering)
  • Dust around the lander. Or something.
  • Non-parallel shadows. (The moon has terrain)
  • Seemingly identical backgrounds. (when kilometers away)
  • Lander unable to balance itself on a rocket. (Like Surveyor and Lunakod did? Like space-X did–YESTERDAY–with six times the gravity and cross winds?)
  • Lunar trainer impossible to fly. (It was not, except when it broke).
  • No flames from lunar launch. (small UDMH engine in a vacuum)
  • Herky-jerky movement of LEM (in low frame rate engineering camera films)
  • No RCS plumes (in same footage with shutter speed less than thruster duration)
  • Astronauts footage shot in slow-motion (demonstrably not so)
  • Why was every picture perfect? (Because NASA didn’t put the crappy ones in Life—but they are on the website)
  • Missing crosshairs in photos (because LIGHT)
  • The deadly radiation of space (is not deadly for a mere camping trip)

accident-christmas

Every single assertion made by these hoaxicanians only demonstrates their own ignorance of physics, optics, basic science, basic math, how to keep a secret (tell only two people–then kill them), how rockets work, how air works, how inertia works, the effects of radiation on the human body, how static charge affects objects, the state of electronics in the 1960s, how TV works, gravity–and EVERY OTHER SINGLE THING

But that’s okay. If it will make the world a better place and my blog a busier nexus of nerd-dom, I’m prepared to refute every single claim by any hoaxicanian anywhere, no matter how daft or ditsy–if that’s what you all would like.

But first, what think ye of this quick and dirty stab? Does this do it in a nutshell? Want more? Have a few dozen more assertions to add to my list (I’ve heard some doozies)? Let me know. The more the merrier.

Outer Spacey Music

The media has been all abuzz today with amazing “revelations” of alien music heard by the crew of Apollo 10 on the dark side of the moon and “classified” until 2008.

Really?

Got a source for that guys? A source other than Fox News or the Interwebs? Cause I do, and it’s not classified, it’s right on the official web site of Nasa’s history office: http://history.nasa.gov/ap10fj/as10-day5-pt20.htm

Some Apollo data was classified at the time (remember the Cold War and the Space Race?) and some of it might not have been released in a timely manner due to oversight, but there was certainly no special treatment given to this event on some “spooky” account. How do I know? Simple. I read the freakin transcript.

Here’s the deal. Apollo 10 went to the moon and did everything but touch down. They detached the LEM and maneuvered in space, the CSM and the LEM, orbiting together as the LEM prepared to go down on a checkout flight. The idea was to run through a landing, but do a planned abort to test the ascent propulsion system and guidance without getting too low for rescue by the CSM in case of failure.

What is being reported as some great mystery is this exchange, plainly recorded in the publicly available transcript just as they were testing their radar (Snoopy is the Lunder lander, flying free of the CSM):

102:12:53 Stafford (in Snoopy): You want some more brownies?

102:12:54 Cernan (in Snoopy): No.

102:12:56 Stafford (in Snoopy): [Garbled] go hungry.

102:13:02 Cernan (in Snoopy): That music even sounds outer-spacey, doesn’t it? You hear that? That whistling sound? (This is the first mention of the sound.)

102:13:06 Stafford (in Snoopy): Yes.

102:13:07 Cernan (in Snoopy): Whooooooooooo.

102:13:12 Young (in CSM): Did you hear that whistling sound, too?

102:13:14 Cernan (in Snoopy): Yeah. Sounds like – you know, outer-space-type music.

102:13:18 Young: I wonder what it is.

102:13:20 (Cernan and Stafford discuss burned insulation outside their LEM windows.)

102:13:29 Cernan (in Snoopy): – eerie, John?

102:13:34 Young: Yes, I got it, too. I was going to see who was outside.

102:13:45 Stafford (in Snoopy): You mark that set of features, Gene-o. I’m going to fix us some grape juice. OK? (Stafford is clearly taking Young’s remark as a joke. All is well.)

. . .[The next three minutes are spent discussing photography of a lunar crater, altitude and range, and how well the radar is performing.]. . .

102:17:58 Cernan (in Snoopy): Boy, that sure is weird music.

102:18:01 Young: We’re going to have to find out about that. Nobody will believe us.

102:18:07 Cernan (in Snoopy): No. It’s a whistling, you know, like an outer space-type thing. (He means like a theramin, commonly used in scifi movies of his youth. In fact, it sounds more like a lightning strike creating shortwave radio noise that travels around the ionosphere back on earth, but its much more uniform than that.)

phasing-insertion-sml

102:18:10 Young: Probably due to the VHF ranging, I’d guess. (Yeah, that’s what it sounds like to me too, either that or electrical noise from static charge movement we now know to occur near the lunar terminator due to the solar wind.)

102:18:16 Cernan (in Snoopy): Yes. I wouldn’t believe there’s anyone out there. OK, Tom, I’m going to call up P20 (Program 20, universal tracking–using the radar).

102:18:26 Cernan (in Snoopy): We want to pressurize our APS here. You get your Rendezvous Radar breakers all In?

102:18:29 Stafford (in Snoopy): Oh, yes. I’m locked on to him (The LEM radar is locked onto the CSM)

102:18:31 Cernan (in Snoopy): OK.

102:18:42 Stafford (in Snoopy): It may be a side lobe (The “music” might be a side lope of the radar beam interfering with the radio.

102:19:01 Stafford (in Snoopy): It’s weird, isn’t it?

102:19:03 Cernan (in Snoopy): Isn’t that weird?

102:19:11 Stafford (in Snoopy): I think that’s a side lobe.

102:19:15 Cernan (in Snoopy): Is it? Huh?

102:19:17 Stafford (in Snoopy): Yep.

And there you go. Later analysis confirmed the cause to be interference between the VHF radio gear on the two spacecraft. The great mysterious “space music,” which according to “News” reports was “classified till 2008” was just the rendezvous radar leaking into the radio spectrum. You know, my college radio station had sideband leakage into the shortwave bands, and even though our transmission was FM, we once got a letter from a guy 600 miles away in Illinois saying he listened on shortwave (AM).

I’m not sure where this “classified” recording would have come from. Apollo uses a special recorder to store voice and instrument data for compressed transmission back to earth. The recordings were transcribed back in the ’70s, and stuck in a warehouse somewere. The have been out on the Internet for a few years, but there is no good index and the recordings are raw. Crew voices are often inaudible beneath the thrum of the instrument signal data. It’s possible someone went looking for the “music” and was able to extract it from the background noise. It would not be surprising if it survived, given that it was heard over the radio by both the CSM and LEM.

At any rate, it wasn’t little green DJ’s playing “Space Music.” It was interference from the rendezvous radar other radio emmissions from the two spacecraft, and the (rather obvious) testement to that fact is the crew’s reaction: Hey what’s that? The Radio. Great, want some juice.

As if going to the freakin moon isn’t entertaining enough.

Geez.

Help for a Moon Hoax Fence Sitter

Someone recently asserted that “his dad” said th moon landings couldn’t be real because blah, blah, blah and that’s impossible, to which I responded with reality. The questioner that came back with these followups:

“What was the radiant barrier [that keeps spacecraft cool] made of?” Several layers of aluminized Mylar (the same stuff that is now used in attics) over a “superinsulation” of alternating layers of Kapton and glass-fiber cloth.

“Water cooled, [referring to spacesuit thermal control undergarments] that must have weighted a lot” No. Tiny plastic tubes filled with glycol and water were sewn to a mesh garment worn over the permanent waer garment, so one layer over the underwear. The purpose was mostly to remove the astronaut’s body heat. The suit reflected much of the sun’s heat and the remaining extremes between the sunlit and shadow sides canceled each other out. Movement, air circulation, and the water garment ensured no hot or cold spots. Thermo regulation was absolutely not a problem..

“If I remember correctly, the suits were at 250 F which is 121 C, at 100 C water boils, so the air inside the suit, when reaching 100 C would make the body of the astronauts burn and the blood boil.” No, dark surfaces would have heated up, but the white suit and reflective visor, combined with insulation, prevented the surface from getting so hot and prevented the heat from reaching the astronaut. Air entering the suit was cold anyway, because it was stored under pressure. The was not a problem. Firefighting gear has it far, far harder.

“Since they were in low pressure inside the suits, they would have boiled at even less temperature.” Yes they would, at about 170 F, but that was never going to happen.

“And cooling that water would be really hard.” No, cooling that water was simplicity itself. When they were in the shade or resting they didn’t need to cool it much at all. Gemini suits had no water cooled undergarment at all, and they worked just fine until the astronauts started doing physical work. In the A7 suits used by Apollo, when they we in the sun for a while or getting hot, a porous plate sublimator was used to cool a heat exchanger, which cooled the glycol loop. The Astronaut could control how much of the glycol went through the heat exchanger soas to avoid overcooling. This method is still used today, and was used for supplemental cooling on the LEM as well.

“Handling half a tank of water in the tank would make a pretty unstable astronaut” Good thinking! Naturally, the engineers thought of that. Water for the sublimator was stored in two flexible bladders, a primary holding about a gallon and a secondary holding about half that much. This were no more problem than today’s CamelBak packs. Really, the inertia of the entire PLSS pack was more of an issue than water slosh.

“Since they were in space, I suppose those are psi absolute, which would mean about 1/3 of the pressure at sea level.” Correct. Apollo spacesuits were pressurized to 5.5 psi of pure oxygen.

“Bizarre that they would use only oxygen given Gus Grissom’s death because of that in 1967.” Not at all. They still use pure oxygen in suits to this day. The reason is that inflating to 14.7 PSI would cause the suits to balloon and make flexing the joints too hard for the wearer, and adding nitrogen to the mix would make the life support pack far more complicated, prone to failure, and tricky to operate. Fire is no more a risk at 5.5PSI and 100% O2 than normal air at sea level. The Apollo 1 pad fire was caused by procedural oversights that led to the cabin being filled with more than sea level pressure of pure O2—a very bad idea. Also, suits are carefully constructed to prevent any source of sparks, and the astronaut can’t exactly forget and light up a stogie.

Hamilton standard’s tests showed that a man can live on pure O2 down to 3.7PSI–provided it’s all oxygen.

“If they weighted 1/6 of earth gravity they would have been able to kick a ball and put it into orbit.” No they wouldn’t. The minimum speed for lunar orbit is well over 2km per second.

“Without atmosphere and with an escape velocity of just 2 m/s, even an astronaut jumping would have been able to put himself into orbit,” No, because we are talking about the moon, where the escape velocity is 2.38 THOUSAND m/s. Even if your astronauts brought a clown cannon, they aren’t entering orbit.

“all the recorded videos and photos show the moon as having its horizon between 100 and 200 m” No they don’t. The horizon on the moon is about 2 kilometers away if you are standing on a plain, and that’s what all the photos show, but there is nothing to give a visual sense of scale.You can’t tell how far away a lunar mountain is without looking at a map. Jack Schmitt took this telephoto image of the Apollo 17 LEM from a rise 3 km away, with mountains in the background:

luna16

Or consider this shot of Apollo 15 from its ALSEP site, which all by itself it about 100 meters away:

as15-82-11054 thru as15-82-11058

Or maybe you mean like this shot of Pete Conrad inspecting the Surveyor 3 probe that landed two years before he did, with the LM in the distance (note the big antenna used to improve TV reception back on earth.)

stou_s12

And lest you are concerned by the lack of a crater beneath the probe—like Apollo, it was designed to cut off the engine early to avoid disturbing the soil it was sent to sample. It malfunctioned, and ended up bouncing 35 feet in the air, no worse for wear.

“A normal person would have recorded around himself…that is what we do when we explore, naturally, we go up and take a look.” Yeah, they did that. I believe it was Apollo 12 in which the commander opened the docking hatch first, then stood up to survey the landing site before going down through the door to the surface. Every major site of every surface mission produced at least one panoramic photo.

“wouldn’t it be normal for astronauts to record the stuff they left on the moon as they take off? You mean turn around and take a picture as they were lifting off? You mean like this movie frame from the Apollo 14 liftoff?

ap14-s71-19500

Why is the Moon Receding?

When the Apollo astronauts set down on the moon, they didn’t just plant the flag and take a selfie–they had science to do.

One of the experiments left by Apollo was a laser range finding experiment. By means of high quality retro-reflectors left by Apollo and two Soviet Lunakod missions, we now know that the moon is receding by nearly 4 cm per year. We also know our day is slowing down. So what gives?

The moon’s gravity constantly creates a bulge in the Earth, mostly in our oceans. But our daily rotation constantly carries that bulge eastward. The moon must then constantly pull it back toward itself–and the bulge constantly pulls the moon forward in its orbit. This has the effect of slowing our rotation and accelerating the moon’s orbit.

tide-frictionDon’t worry, though. Although the moon is now almost a foot farther away that it was when we first set foot on it, it’s not going anywhere. The recession is slow enough, the sun will die before the moon can get away.

 

=======================================

Does worrying about the moon keep you up at night? Leave a comment and let me know. And while you’re up, drop by my website for a free scifi sampler.

Of Space and Pens

The story goes that NASA spent millions of dollars developing a high-tech space pen while the more practical Russians just used a pencil.

Only it isn’t true. At all. 1838a

During the first NASA missions, US astronauts used pencils. For  Project Gemini, for example, NASA ordered mechanical pencils in 1965 from Tycam Engineering Manufacturing, Inc., in Houston. The fixed price contract purchased 34 units at a total cost of $4,382.50, or $128.89 per unit. That created something of a stink, as many  people believed it was a frivolous expense. NASA backtracked immediately and equipped the astronauts with less costly items.

During this time period, Paul C. Fisher of the Fisher Pen Co.  designed a ballpoint pen that would operate better in the unique  environment of space. His new pen, with a pressurized ink cartridge,  functioned in a weightless environment, underwater, in other liquids, and in temperature extremes ranging from -50 F to +400 F.  He developed his pen with no NASA funding, at a reported cost of $1 million–then  patented the pen and cornered the market as a result.

Fisher offered the pens to NASA in 1965, but, because of the  earlier controversy, the agency was hesitant in its approach. In 1967,  after rigorous tests, NASA managers agreed to equip the Apollo  astronauts with these pens. NASA purchased 400 pens at $6 per unit for Project Apollo.

The Soviet Union also purchased 100 of the Fisher pens and 1,000  ink cartridges in February 1969, for use on its Soyuz space flights.  Previously, its cosmonauts had been using grease pencils to write in  orbit.  Both American astronauts and Soviet/Russian cosmonauts have continued to use these pens.

I use them too. They are great for autographs and won’t leak or go dry when left for months in a car. Of course, the price has gone up.

 

Yes Virginia, We Really Did Land On The Moon

For those genuinely in doubt as to whether we sent twelve men to walk on the moon, some facts.

220px-alsep_as15-85-114681. We left retroreflectors on the moon, just like bicycle reflectors only bigger and not as pretty. Visit the McDonald Observatory or any other with the proper laser range-finding equipment and you can see for yourself that the laser energy returns when the telescope is pointed at the designated landing sites and does not return elsewhere.
2. Two recent survey missions have photographed the landing sites. The LRO has dipped low enough to resolve not just shadows and disturbed soil, but the descent stages and rovers we left behind. No word yet on the poop bags, but they’re here somewhere.584640main_apollo17-right-670

3. We have films of much of the research and testing, and if you know enough about science and engineering to know what you are looking at, it’s all clearly the real thing.

4. We still have much of the hardware. For example, F5 engines from the Saturn-V are currently being disassembled and in some cases fired as part of an effort to develop a cheaper follow-on engine. They clearly are what they claim to be. I’ve personally seen the Saturn-V stack on display in Houston, and it is clearly authentic. Among other things, a  prop would not be made of the same materials, and it would either have phony components or all off the shelf 1960’s hardware. But much of the Apollo hardware was custom developed at great expense, and if you know what you’re looking at, you can see it’s for real. A prop or fake would not have details that only an engineer (or nerd who’s studied the blueprints) would notice.

news-031605a

Workmen at JSC in Houston inside the SLA (the adapter where the LM sat during launch), looking up at the heat shield of a real Service Module without an SPS engine installed. The hole at top (behind the strut) is an access port for fueling, venting, and testing the SPS propellants.

5. We have thousands of pictures taken on the moon, which clearly are what they claim to be. All alleged problems with these materials only demonstrate the ignorance of the conspiracy nuts alleging the problems.

For example: Many conspirators complain that the lander didn’t kick up a lunar dust cloud. Of course it didn’t. Billowing dust can only occur in an atmosphere. In vacuum, each particle—no matter how small–flies off in a straight parabolic arc never to be seen again.

For another example: Motions of the flag claimed to be caused by air currents are—in every case—clearly inertial movements or static electric attraction caused by astronaut movement. The very movements the nutters complain about prove the landings were real. (For many other such examples, visit Bad Astronomy)

6. We have hundreds of pounds of moon rocks. Granted, you need access to them and you need to be a geologist with the right credentials to evaluate them, but at least some, such at the helium-3 impregnated rocks from by Apollo 17, could not have been produced on earth.

7. The Soviets were watching everything we did. They would have ratted us out. They would have LOVED to rat us out.

8. Thousands of people saw it. Not just the spectacular launches and the sailors on the recovery ships, either. Thousands in Hawaii, for example witnessed the Trans-Lunar-Injection burns.

Apollo 8 burn at about 165 miles altitude photographed by the Smithsonian Astrophysical Observatory in Maui.

 

 Others around the world watched the spacecraft on its way to the moon:
 S-IVB third stage venting over spain.

S-IVB third stage venting remaining propellants (oxygen from one end, hydrogen from the other, both illuminated by sunlight) a few minutes later, photographed from Spain

Apollo CSM, S-IVB and SLA panels photographed from Table Mountain SA.

observers at Table Mountain Souther Africa, and the Navel observatory in Arizona photographed the S-IVB stage, CSM, and adapter panels through telescopes, and counted revolutions of the panels.

Apollo 11 streak in time exposure from SA.

Apollo 11 was observed by thousands in British Columbia, and the streak in this photo from Table Mountain South Africa shows the spacecraft in time exposure, midway through the lunar coast phase.

 

Telescopic image of Apollo 13, with S-IVB and O2 cloud after the explosion, captured by an amatuer.

Thousands of people observed the missions using telescopes set to coordinated pre-calculated by NASA. Jim Gallivan at Corralitos captured the Apollo 13 explosion in real time, and published this image in Sky & Telescope at the time.

 

Another amatuer shot of the Apollo 13 O2/debris cloud captured in British Columbia.

A Mr. Younger in British Colomber, using a .4 meter telescope, took this photograph of the oxygen and debris cloud surrounding Apollo 13 moments after the explosions. Calculations referent to the prominent stars confirm the spacecraft was in the location NASA calculated at the time.

9. We have documentation in the form of operations manuals for the command and service modules, the LEM, the suits, the rover and much more–all completely authentic and sprinkled across the world including depository libraries like the one at Lousiana Tech where I read them before the conspiracy nuttery had gotten any legs.

10. This guy:

I’ll be posting in more detail soon about specific conspiracy claims and how what they really prove is the ignorance of those making them.

We went to the moon. It was expensive, but like Frosty the Snowman, we’ll be back again some day.

Vanguard Of Human Vision

ImageThe oldest still-orbiting man-made object is Vanguard I. The first solar-powered satellite, it was launched in the wake of Sputnik to study orbital conditions. It continued to broadcast for seven years and still remains in a shallow elliptical orbit that barely dips near the rarefied upper atmosphere. Originally projected to remain aloft for two thousand years, it has since been determined that friction from the solar wind and other environmental factors will bring it down by around 2,198 if it doesn’t collide with something before then.

This of course brings up the specter of orbital trash that now blankets our world, but it’s also a testament to our achievement as a species. Petty as we are, it’s easy to let our conquests and vices define us, and it’s unsurprising that so many seek comfort in a metaphysical eden beyond the reach of our squabbles and pollution. But if we fall short of the civilized ideals we imagine to move the heavens, we can at least take pride in this: our race, and ours alone, has aspired to the ideal.

Of all the millions of species that have inhabited the good earth, only we have sent emissaries hurtling through the universe for no other reason than to understand it. Whatever comes, our legacy now is assured. Should we perish tomorrow and send each other to a hell of our own making, machines with names like Pioneer, Voyager, and Sojourner will remain, forever proclaiming the best of what we are, and by the very evidence of their existence, the message left close by to our first steps on another world: “WE CAME IN PEACE FOR ALL MANKIND.

One Great Man, One Giant Legacy

The first ape to leave his planet of origin and go for a walk on another is remembered today as a “great man”. Perhaps, and the honor is certainly well deserved, but if Maj. General Armstrong was great, it was more for his conduct on the ground than for his exploits in space.

Humanity’s considerable success does not arise only from our intelligence or the dexterity of our opposable thumb. We have diversified, colonized, and advanced because of our unique balance of aggression and cooperation. Arguably, nowhere in our entire history is this better illustrated than in the Space Race of which Armstrong became such a key part.

We went to the moon for science and exploration and adventure, but we signed the checks to stick it to the Ruskies. We went because the two most powerful nations the world had ever known were locked in a stalemate of nuclear hair triggers that—once or twice that we know of—had brought us within hours of potential extinction. And yet, at this pinnacle of barbarism, we did what our ape family has been doing for over a million years: we hatched a bold plan, put together a team, and pulled off the win. At the height of the cold-war, we unleashed the combined creativity and dedication of 150,000 American engineers, scientists, managers and laborers to build a system of machines, the complexity of which makes the Great Pyramid just a pile of rocks by comparison.

Then we put together the procedures, policies, communications networks, and contingencies needed to test, perfect, and utilize this monster to do something that throughout history and until the last decade, had seemed to be impossible. We even broke the rules and put together a back-door alliance when it turned out that radio signals used by Soviet espionage vessels off the Florida coast had the potential to compromise the moon shots (in response to a long relay of unofficial personal pleas, the Soviet radios were silenced).

Armstong too, illustrated this human balance. He is remembered (rightly so) for his humility, but he didn’t get to the moon by being a wallflower. He was smart and sociable, but he was neither particularly well connected nor an academic superstar. He was, however, reliable. He made good grades and he did his job. When opportunities arose, he jumped on them with both feet. He fought in Korea, then he volunteered to be a military test pilot. Then he went to Edwards AFB, where he took the very unglamorous job of flying chase planes and the bombers that dropped the test aircraft. He went on to fly 600 different types of aircraft, most of them experimental. At Edwards, he regularly risked his life and just as regularly came back alive. Famously, when he ejected from a failed Lunar Landing Training Vehicle, he hitched a ride back to the office and started on the paperwork while some of the other Astronauts looked on in awe.

He made mistakes. He got a test plane stuck in the mud. He bumped into the ground with another and–through a serious of “bad day” challenges familiar to us all–ended up stranding three test pilots at another base. But when things went wrong, he handled them. He volunteered for Apollo, but was late getting his paperwork in. They took his packet anyway—they knew his reputation.

Neil Armstrong didn’t just go to the moon, he took us to the moon–all of us–and he saw his role in history with a clarity and humility that allowed him to step back and let us enjoy the ride. His passing, after 82 years, is a loss and sadness for his family, but his life will remain with us as a heroic example from a heroic time in our human journey. Neil Armstrong was indeed a great man, not because he was better than so many others, but because he was the sort of human being that any of us can be with a little bit of moxie, a little bit of smarts, and a whole lot of effort. He was a true hero, because more than anything else in this life, we all need to be reminded that we are all of us capable of greatness.Time and micrometeorites will erode the prints men left on the moon, but the down-to-Earth life of the first man who made them will forever be recorded, as truly a giant leap for mankind.